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The problem considered is the propagation of unloading waves, which was 
proposed by Rakhmatalin [I]; the existence and uniqueness of functions 
describing unloading waves is shown; certain uuslltative proParties of 
these functions are studied. It is shorn that 88 t - m. the speed of 
propagation of unloading waves approaches asymptotically the speed of 
propagation of elastic distortions. 

1. Formulation of the problem. One seeks functions u(x, t), 
11(x, t), f(x) such that the continuously differentiable function f(x) 
divides the domain x >O of the x, t plane into two domains I), and D,; 
the functions u(x, t) and u(x, t) are continuous on x>O, continuously 
differentiable on tbe domains D, and D,, and satisfy: 

in the domain D, the system of equations 

% (2, t) = Uf (2, t), q (5, t) = a2 (u) u, (5, t) (1.1) 

and the condition 

in the domain L$ the system of equations 

r, (2, q = ut (z, t) 

and the condition 

Besides 

160s 
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u (u (0, 2)) = p (t) for t > 0 

(3 (u (0, q) = q (t) for o> t > z (0) 
u (.2, z (0)) = 0, 21 (z, T (0)) = 0 for 1: >o 

where p(t) and q(t) are continuously differentiable functions such that 

p (0) - 9 to), P’ (0 < 0, tl’ (0 >, 0 

Tne function a(u) is a continuously 
0’ 

differentiable monotone decreasing function, 

defined by the equation (see Fig. 1) 

$ = _j_ 5 &j 
P da 

(a(u) = a0 for u< E*) 

where p is the density for u = 0, that is 

p = const; the function T(E) is defined by 

the equation U(E) = (1(-r). 

~ ___A 
E’ F _ 

Fig. 1. 

2. Lemfnn 2.1. ff tfiere exist functions u(x, t), 4x, t), f(X) satis- 

fying the conditions specified above, then 

where here as well as in later considerations, we have set 

s (21 = u (27 f (4) 

Proof. Let us suppose that at a certain point the inequality (2.1) 

does not hold. Then there is an entire interval Lx, - u, x0 + d; with 

u > 0, such that the inequality does not hold throughout this interVa1. 

As is known 

ihI CYV 

5 = ux cos ‘p + utsin cp, 5 = vx cos cp + v1 sin q! 

where &/a, and &/a~ are directional derivatives along f(x) and tan Q = 

f’(z). 

From (1.1) and (1.2) we obtain 

(2.2) 

(2.2: 

where 
ul+ =T lim Us (.c, t) for (2, !)E&, (2, 1) - (I, I(5)) 
al- = lim u1 (x, 1) for (.r, t) E D2, (2, L)--* (z, f (4: 
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since ut+ > 0, ut- < 0, and (2.1) does not hold, from (2.2) and (2.3) 

it follows that 

674 __d!!=o (2.41 

Further, notice that f(0) = 0 and f(x) >%/a0 + T(E+), which follows 
from the fact that, in the domain bounded by the straight lines t = -r(O) 

and t = x/a0 + T(E*), the systems (1.1) and (1.2) coincide. Let us 
suppose that there exists a point xl such that f ‘(xl) < 0; then f(x) 

would have a minimum on the interval (x, a), say at the point x2. and 

Fig. 2. 

there would exist an interval [x2-~l, x2+u11, 
with ~1 > 0, on which 

$> f’> -$ (2.5) 

that is, (2.1) does not hold. As has already 
been shown, on this interval (2.4) holds. 
Consider the interval [x2 - i-12, x2 + ~~1, 

p2 = l/2 Ml. Let us set 

Ul (x, t) = 
~(2, t) for t<<((2; 

8 (4 for t>fW 

Then, for arbitrary x3 in [i2 - p2. x2 + ~~1, there exists a function 
t = y(x) defined for all x > x3 and satisfying the equation 

dy (4 1 
-XT=- a (~1 (x9 YN 

(2.G) 

for which y(xg) = f (x3), see Fig. 2. In Fig. 2 one has a graph of the 
function t = y(x), and also of the straight line t = x/a0 + T(E*). and 

the coordinates of the points aa, al, . . . . a5 are the following 

%J = &l, f (Xl)h a1 = (3% - p1, f (a - WI, 

aa = (3% - pa* f CJh - IL$)), as = {x3, f (x3)), 
06 = ($3 + Pl, f (x3 + as)) 

Let us prove that 

Y (4 <f(x) for x>q 

Indeed, if x > x3 and x is in the interval [x2 - ~1, x2 + pII, then 

dY<-l zi ao<z. or Y @I <f(x) 

Further, from (2.5) and (2.6) we have 

f(s)--fts)C’9--$’ “f , Y(“s)-Y(xa+p1)> y+p1 ‘-E (2.7) 
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ixnce ffQ = Y(Q). it foltows that f(%.$ - y(x2 + &) > 0; and for 
% > x2 + Pl ue have y(*) < yfxg + @I). From this, since f(x) >, f(.xZ). we 
deduces that y(x) < f(%) for all x > x3. 

Now, sinC0 y(x) < f(n) fOF x > ‘x3, it follows that (%, y(r)) Is con- 
tained in D, and that the curve is a characteristic of the system (1.1). 

But y’ ( 0, aud thus the curve t = y(x) must intersect the strai&t 
fine t = n/o0 + Tf%*). Along this straight line one has B = Const, 
v = congt, and along t = y(x) one bsa 

v+9W=const (IpO.4 = {~Wdf) (2.8) 
0 

tbaa 

and this, together with (2.4). gives au/as = 0, &/as = 0, or 

e (2) = con&, v (q f (5)) = const (z f Is - I-La, 2% + Pal) 

~&is in tata f~plfes that, is the domain bounded bs t = f(%) and the 

characteristics of the amten 

t-f. $-f(zp p*)-==o, t- x 
%-I 

&--f(x2f ib~fx*=o 

one has ii = eonst, Y = cons& which contradicts the fact that this doatafn 
lies in D,. 

Thus, finally, f’(x) 3 0. This implies that for arbitrary x there 
exists a oharacteristic of the system (1.1) which passes through the 
point (x, f(x)) and intersects t = %/au + T(E*); that is, that (2.8) and 
(2.10) hold throughout D,, Then, if for a certain % the inegualitg (2. f) 

did not hold, there would exist an interval for which (2.4) aud (2. IO) 
hold simultaneously, and this is impossible, as has just been shown. Con- 
sequently, the required inequality has been proved. 

As was showu by ~~atu~i~ [I] ( from the lmna just proved it 
follows that the probftm of determining f(xZ reduces to the solution of 
the following system of functional equations 

%I (4 + Xl = sol (2.11) 
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f (x) - & = t (E (4) (2.14) 

and the problem of determining u(n, t) and V(X, t) reduces to the usual 

boundary value problem for the system (1.1) and (1.2). 

3. Discussion of the fundamental system of equations. Let 

us establish certain simple properties of the system (2.11) to (2.14), 

based on the assumption that it possesses a continuous solution. 

3.1. Let us prove that f(x) < n/al. Rere, and in what follows, al = 

U(E(O)), x >o. Indeed, from equation (2.14) we have f(x) % x/a(c(x)) ; 
the function -r(~) is defined only for E(X) < E(O), and hence a(~(x))),a~; 

this gives the desired inequality. 

3.2. Let us prove that E(X) > E*. Recall that U(E) = a0 for E < E*. 

Let us suppose that there exists an x1 such that I< E*. Ihen equa- 

tions (2.12) and (2.14) give 

a,f (x1) - Xl = &Jt, UJ (%I - 51 = aoz (6 

and since t >O, and T(E) < T( E*) < 0, this system has no solutions, and 

the required inequality follows. * 

3.3. Let us set 

lhen 

2@’ (8 = pa (a0 + a), 2Y’ (E) = pa (a0 - U), or W > 0, Y’ > 0 

In particular, there exists a 6 such that 

CD’ (gl) > A > B > Y’ &) for EI, Ez E 18 (0) - 6 8 01 (3-l) 

Let us put, in the system (2.11) to (2.14) 

P (0 = Pi (0, IT (E) = Zi (E) 

‘he solution functions of this system will be denoted in the sequel 

by fi(n) and Ed. 

Lemma 3.2. Given two systems of the form (2.11) to (2.14) such that 
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‘Ihen 

Pl (0) = P2 WI Pl PI > Pz (07 zl 4 < ra 69 

s&) > s2 (22) for zl< 22 (3.2) 

Proof. Let us supnose that the lemma is not valid, i.e. that there 
exist xl < ~2 such that sl(zl) < ~2(z2). Consider two sequences 

x1 = Zl’, x21, xa’, . . ., 22 = Xl’, xf, x2, . 

which satisfy 

tij E jij _ .$ Xi+? = ti++ + - (3.3) 
(10 

such sequences will he called sequences 
of type I. 

These sequences are shown in Fig. 3, 
* __-._* where 

ai 

Fig. 3. Ni = {z?, fa (xi% 

are the abscissas of the points of sequences of type I, starting with x2 
and xl, and +iJ and xi+11 are given by (3.3). 

Here we have employed the notation 

fij = rj cq9, Eij = Ej (xj), Ai = Ei= - Eil, aij = a (&, 71 = vi (Qj) 

It is obvious that for each zij one may obtain from (3.3) the corre- 

sponding x i+l’ in such a way tbat, for arbitrary xl and x2 there exist 
sequences of type 1, beginning with xl and x2. Further 

ti+fj _ aOf*+li - xi+lj 
aClfi+13 + q++ 

- a05 - 1 ) 
tj’ a05 + 1 

E = fi+l’ 
-6% 

%+1' 

as follows from property 3.1; thus 

G+I’ ( a0 - al 
-\- 

ti’ a0 -I- al 
(3.4) 

This implies that t ij - 0 as i - 00 and that lij - 0 as i * q because, 
from equation (2.11) one has xii < sot iJ. Let us suppose that 

Eta > Ei’, ti’> ti’ 
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then 

@ (Ei*) - y t$+t> = P?s tf*‘) CD f&j,‘) - y t’i+t) = Pl (‘f’) Pp (VI Q PI (4’1 

From this, it follows that 

UF (ei+~) - Y (‘if:) ,, CD (‘i2) - CD (‘i’) 

or 

Ki = a (Ed Ia0 + a (El)1 b E b:, e:l 
A i+l>, &hi, 

a (ia) [%i - a (Ml $a E [E:+1S 
'1 

Ei+r I 

Let US prove that ei2 > kill ti2 >, tii imply that ti+12 &ti+ilS From 
equation (2.14) and the relation (3.3) one obtains 

t. j= 
(a0 - a. j) tij + 2ai+: i+: H-1 ‘z * 

a+1 .- 
a0 + ai+: 

t. 51 _ ti+; = taO - ai+ (‘0 + a+&> tis + 2ai+T t% + a++ :) ri+: _ 
t-f-1 @o c a$+:) fao + a$+:) 

_ (a0 - ai+$ fuo + ‘i+$ tjl+ 2ai+: (a0 -t- ui+$ Ti+: = 
(00 + at+:) (a0 + ai+!) 

uO (‘i+: - ++J,) a ($l + tia - 2Q,.~) + (aoa - ai+:al+$ (tia - til) 
zz.z 

(aa + ‘*+i) (‘0 + ui+i) 

+ 

+ 

2ui+i (‘0 + a$+:) (‘i+t - ‘i+:f , o 

(‘0 f “is:) to0 + ui+f) ’ 

And, since it was already shown that Ai+l > 0, one obtains 

In particular, therefore 

Since b, > 0. t12 >, tll, then, for every i one has ti2 > t il, Ai+l > 

“iAi* from which 

(3.5) 

Employing Xi3 * 0 as i - * and the continuity of the Ej(r), one ob- 

tains that all the *ii* save possibly a finite number of them, lie in the 
neighborhood CO, El], in which 

El (2) E [z (0) - 5, s WI, Ez (4 E Is (0) - 4 * (WI 
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for L in CO, 8ll. where 8 is the same as in propertg 3.3. Then there are 
just a finite number of the X, which are less that A/B, where A and B 
are the same as in property 3.3; that is, from (3.5) we obtain Ai + m as 
i + ml which contradicts the continuity of Ej(n) at I = 0. 

7korem 3.1. ‘Ihe solution of the system (2.11) to (2.141, if it exists, 
is unique in the class of continuous functions. 

Indeed, let us suppose that the system (2.11) to (2.14) has two solu- 

tions El(x), fl(x) and E*(X), f2(x), It is clear that al(x) and fl(x) 
satisfy the system (2.11) to (2.14) with pi(t) = p(t). TV = T(E), and 
the functions E*(x) and f*(z) satisfy the same system, but with p2 (t) = 
p(t), and life) = ?(ef. From the fundamental Lemma 3.1 we have &I(r) >, 
ez(x) aud a,(x) &E~(.Y): hence Al = Ed, and from (2.14) we obtafn 
flfx) = f2(%). This is what ~8s ta be proved. 

I%WW 3.3. If the system (2.11) to (2.14) has a solution E(X), f(x), 
then E(X) is a monotone decreasing function. 

The proof follows imnediately from Lemma 3.1 and ‘theorem 3.1, 

Lemma 3.3. If the system (2.11) to (2.14) has a solution in the class 

of continuously differentiable functions, then f’(x) satisfies the in- 
equality (2.1). 

Proof. Differentiating equation (2.14) we obtain 

d# 
& = &+[z&+&]~ 

and, because E’(X) g 0, U’(E) < 0, “r’(e) 2 0, we obtain f’(x) < ocl(e(x)). 
Further, obviously, the inequalitg f’ > au-l is equivalent to the fact 
th3t eQustion (2.12) has, for all t 7 fz, nclt ratme than one solution. 

Let us suppose th;t” for a ;ertai; 

solutions x*1 
to, equation (2.12) did possess 

and x2 , with x2 # “2 * Let us choose a solution of ecua- 

tion (2.11) a;d call it xl. Then, from equation (2.13) we have that 

E (x3’) Z2E(X1 ) > E*, and from equations (2.12) and (2.14) we obtain that 

L*l = “3 , which contradicts x2 I J x25 therefore f’(r) > oe-1 and the 
lemma is proved. 

Let us note that from Lemna 3.3 it follows that, if the system (2.11) 
to (2.14) has a solution, the original problem also has a solution. 

Lenuna 3.4. Suppose that one has two systems of the form (2.1.l.) to 
(2.141, with solutions Ed, fl(z) R and ~~(x-1~ f,(x). 'Ihen 

l&l (4 - El; (4 I < (P&T1 P 

U = {min U (8j (0))} (i = 1, a), h = max 1 z1 (e) - z2 (8) 
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cr = max I PI (4 - p2 0) I + max I PI (t + 21) - p1 (0 I 

Proof. Let us consider the difference cl(x) - s*(z) at a certain point 
x, and suppose that Ed - EI(x) < 0; the other alternative can be 
handled merely by permuting the subscripts 1 and 2. Then 

t1- te = x 
[ 

1 1 
a (h(4) - a (Q(X)) 1 

+ Tl(El (a - 5 (El (2)) - 

= x = (Es Ix)) - a (e1@)) 

= (er (4) a e-1 (4) 
+ 71 (e1(4) i 71 (er (4) -I- 

+ n(e2 (x)) --7a @a(4)),- IG(%(4) - tz(Q (4) I>, - I. 

From this one obtains t2 - tl 62h. Consider two sequences of type I 

x = 211, za', xs', . . ., 2 = 212, x,3, xl?, . . . 

from inequality (2.1) it follows that 

Xi’ > “r+i, E*+i >, Eij (i = i, 2) 

Here and in what follows we shall employ the notation of Lemma 3.1. 

Let 

Eil > Ei2 for i< n, ti2- t:<2k for i<n-i 

Then 

t 
* 

I _ t 

n 
I = (a0 - ana) h-l + 2ans7n2 

=o + %a= 
- 

(a0 - hn’) tn_: + ~n’%tl _ 
a, + an’ 

= a0 (an1 - an*) (tn_t + &f - %‘I + (ad - an1an2) t&-t - t-f) 
(a0 + an11 (a0 + an21 + 

+ 
2%’ (a0 + an21 t%’ - Gal 6 2 (ao2 - an%“) + 2ad (a0 + ana) i = 

(a0 + ad) (a0 + ana) (a0 + an’) (a0 + %Y 

= 2ao 
=o + ana 

h<22h or tn2 - t,’ < 211, 

Further 

pa (tia) - JQ (ti’) = pp (tc) - JQ (ti’ + 2hj _t p2 (t*' + 21) - 

-_h(t*'+ 2h)+pl(tt' f 2%) -Pl(til)>- I* 

For i < n we have 

‘P (si’) - “I! (s?) > Q, (ei__i) - Q, (s+3 - P (et >, si3, si’>, ei__:, 

Therefore, putting Y’(E) = g(<). @‘Cc) = q(c), we get 

(3.6) 

‘il >, Ei-i) 
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eil 1 
Y-1 

s g (x) dx - 
s 

qt4dl:+ P>O 

EiT 2 
‘i-__1 

that is, setting 

1 

x (t) = 
Ei-_l - Ei__? 

t+ 
Ei__:Ei2 - Ci_l”Ei’ 

Eil - Ei2 Eil - Ei2 

it follows from (3.7), using the mean value theorem, that 

I >O 

Further, ~(5) .< 6, and since x(t) is linear 

2 (ei2) = si_T < ei2, z (.q) == $_; < Ei’, E E [EiS9 sill 

From this 

and, because - Ai >O. one obtains 

- _ ‘p 1 
rm(ao+ 4 1 

that is 

i-a 

(3.7) 

(3.8) 

There are two possible cases: (1) all - A, > 0, and (2) there is n1 
such that - A 

"1 
> 0, - An +l<O. 1n the first case, since the quantities 

An are bounded, from (3.9; we have 

m 1 
ell - e12 < 2 - 2p 

k=O h Pal (a0 + *I) 
(3.10) 

while in the second case, from (3.6) 

1 en, - elf< 2P 
Pal (a, + 4 ’ 

or E11d’12G~o$ pal($+al) 

The conclusion of the lemma follows immediately from this. 

Lemma 3.5. Let us suppose that for z in [0, m] there exist continu- 
ously differentiable functions fo(x) and Ed, satisfying the system 
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(2.11) to (2.14). ‘lhen there exist continuously differentiable functions 
E(Z) and f(x), defined for x > 0 which satisfy the system (2.11) to 
(2.14) for x >O, and also satisfy 

f (z) = fll (2% 8 (Z) = s, (Z) for XE [0, m] 

Proof. Let us define the function h(x) by means of the equation 

and suppose that h(n) > E+. Let us introduce a function x,(x) defined by 
the equation 

2 = a@ (Xl)) 
aof (a) + Xl - *or (8 (Xl)) 

ao---(~n) 
for xl< m (3.11) 

From h(r) > E* and the monotonicity of the functions appearing in (3.11) 
it is obvious that this equation has a unique solution. Put fl(x) = 

a-l(sl(x))x + T(E~(z)) and Ed = h(xl(x)), it is immediately verified 
that these functions satisfy the system (2.11) to (2.14) on the interval 

co, all., with m = x1(q); the continuous differentiability of this solu- 
tion follows immediately from the continuity of E,,‘(X) and f,,‘(z). Let 
us construct, in an analogous manner, the intervals [O, n1~1, LO, m,l,. . . , 
and suppose that the process be continued indefinitely. Then we obtain, 
from (2.11) and (2.12) 

GnZ ao+ =1 t 
- m-1 no- a1 i 

t,= f,(m,) -2 1 
tm-, -9 P (&J d 0. 8(t&--,Ql)/E+ 

On the other hand, equation (2.13) gives E,) = 0, and hence there 
exists n such that h(r,) > E*, h(rn+l) d E*. Therefore there is an x+ 
for which h(x*) = E*. 

From equation (3.11) it follows that x A Q) as xl(x) - X* - 0; thus, 
the functions fn+l (x) and E,,+~(z) are defined for all x > 0 and are solu- 
tions of the system (2.11) to (2.14); according to Theorem 3.1 one must 

have E,,+~ (x) = Q(Z), fn+l(4 = f,,(z), when x E [O, 11, and the lemma is 
proved. 

Note. We have 

that is, for x - 0~: 
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which assures the existence of the asymptotes of f(z). Let us note that. 

the existence of the asymptotes of f(x) h as the following physical inter-- 
pretation: the speed of propagation of the unloading waves, as x - m, 

approaches the speed of propagation of elastic vibrations, a,,. 

Theorem 3.2. If p(t), T(E), a(~) are continuously differentiable func- 

tions, and T’(E) > 0 for E in the interval [E*, E(O)], then the solution 

of the system (2.11) to (2.14) exists, in the class of continuously 

differentiable functions. 

Proof. Consider a sequence of continuously differentiable functions 

Pi(‘), converging uniformly, together with their first derivatives, to 

p(t). and with pi(t) = p(O) for t d pi(pi > 0). Then any system (2.11) to 

(2.14) with p(t) = pi(t), T(E) = -ri(~), has, in view of Lemma 3.5, a 

solution in the class of continuously differentiable functions, because 

in an arbitrary neighborhood of zero one may set 

‘(Ei(z)) r= P(O), fi (zc) = a*-‘2 

Now, from Lemma 3.4 

I Ej (I) - ‘i t5) I < (Pa12)-' max I Pj tt) - Pi tt) I 

Hence the sequence am converges to a continuous function E(Z), 

which, together with the function 

z 

j (%) = a (E (2)) 
~ -f- z (E (2)) 

constitutes a solution of the system (2.11) to (2.14). 

In order to prove the continuous differentiability of the solution, 

one differentiates equation (2.13) and carries out considerations 

analogous to those employed in the proof of Lemma 3.4, thus obtaining 

bounds of the type of (3.10). after which the proof does not present any 

difficulty. 

In conclusion, I would like to thank N.V. Zvolinskii for his advice. 

BIBLIOGRAPHY 

1. Rakhmatul in, Kh. A. , 0 rasprostranenii volny razgruzki (On the propaga- 

tion of unloading waves). PMM, Vol. 9. No. 1, 1945. 

Translated by J.B.D. 


